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PROOF OF THE SOUL CONJECTURE OF
CHEEGER AND GROMOLL

G. PERELMAN

In this note we consider complete noncompact Riemannian manifolds
M of nonnegative sectional curvature. The structure of such manifolds
was discovered by Cheeger and Gromoll [2]: M contains a (not neces-
sarily unique) totally convex and totally geodesic submanifold S without
boundary, 0 < dim$§ < dim A/, such that A is diffeomorphic to the
total space of the normal bundle of S in M. (S is called a soul of
M ) In particular, if § is a single point, then M is diffeomorphic to a
Euclidean space. This is the case if all sectional curvatures of M are posi-
tive, according to an earlier result of Gromoll and Meyer [3]. Cheeger and
Gromoll conjectured that the same conclusion can be obtained under the
weaker assumption that M contains a point where all sectional curvatures

are positive. A contrapositive version of this conjecture expresses certain
" rigidity of manifolds with souls of positive dimension. It was verified in
[2] in the cases dim.S = 1 and codim S = 1, and by Marenich, Walschap,
and Strake in the case codimS = 2. Recently Marenich [4] published
an argument for analytic manifolds without dimensional restrictions. (We
were unable to get through that argument, containing over 50 pages of
computations.)

In this note we present a short proof of the Soul Conjecture in full
generality. Our argument makes use of two basic results: the Berger’s
version of Rauch comparison theorem [1] and the existence of distance
nonincreasing retraction of M onto S due to Sharafutdinov {5].

Theorem. Let M be a complete noncompact Riemannian manifold of
nonnegative sectional curvature, let S be a soul of M, and let P. M — S
be a distance nonincreasing retraction.

(A) Forany xe S, v € SN(S) we have

Plexp (tv))=x forallt>0,
where SN(S) denotes the unit normal bundle of S in M.
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(B) For any geodesic y C S and any vector field v € T'(SN(S)) paral-
lel along y, the “horizontal” curves y,, y,(u) = expy(u)(tz/) , are geodesics,
filling a flat totally geodesic strip (t > 0). Moreover, if y[u,, u,] is mini-
mizing, then all y,[u,, u,] are also minimizing.

(C) P is a Riemannian submersion of class C ' Moreover, the eigen-
values of the second fundamental forms of the fibers of P are bounded
above, in barrier sense, by injrad(S)_1 .

The Soul Conjecture is an immediate consequence of (B) since the normal
exponential map N(S) — M is surjective.

Proof. We prove (A) and (B) first. Clearly it is sufficient to check that
if (A) and (B) hold for 0 < ¢ </ for some / > 0, then they continue to
hold for 0 <t </ +¢(l), for some &(/) > 0. In particular, we can start
from [/ =0, in which case some of the details of the argument below are
redundant. _ A

Suppose that (A) and (B) hold for 0 <¢ </. For small r >0 consider
a function f(r) = max{|xP(exp ((/+r)v))l[x €S, v € SN (S)}. Clearly
f is a Lipschitz nonnegative function, and f(0) = 0. We are going to
prove that f = O (thereby establishing (A) for 0 < ¢t < [ 4 ¢&({)) by
showing that the upper left derivative of f is nowhere positive. _

Fix r > 0. Let f(r) = |x, — X,| where X, = P(expxo((l +r)y,) . Since
r is small and P is distance decreasing, we can assume that |x,X,| <
injrad(S) . Pick a point x, € S so that x, lies on a minimizing geodesic
between X, and x,; let x, = y(u,), x, = y(4;). Let v € I'(SN(S))
be a parallel vector field along vy, ”|x0 = v,. Then, according to our
assumption, the curves y,(u) = expy(u)(tz/) , 0 <t <, are minimizing
geodesics of constant length filling a flat totally geodesic rectangle. In
particular, the tangent vectors to the normal geodesics o, (f) = expy(u)(tz/)
form a parallel vector field along y,. Therefore, according to Berger’s
comparison theorem, the arcs of y, 4+ are no longer than corresponding
arcs of y,, with equality only if y,, / <t <[+, are geodesics filling a
flat totally geodesic rectangle.

Now consider the point X, = P(g, (/+7r)). Using the distance decreas-
ing property of P and the above obslervation we get

(1) [%o%,| < lo, (I +1)o, (1 + )| < o, (Da, ()] = Pxex, .
On the other hand,
(2) |x171| < f(r)= |xofo|-

Taking into account that by construction

[XoXol + 1xgx, | = X%, | < %%, + XX, 1,
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we see that (1) and (2) must be equalities, and therefore
(3) yt[uoaull’ l§t§l+r=

are minimizing geodesics filling a flat totally geodesic rectangle.
Now for § — 0, we obtain

flr=8)2 1x,P(o, (I +r = )| = [Xox,| - [%gP(0, (I +7 — )]
> XX, — |aul(l +r— J)Guo(l + )] |
> X%, | — |aul(l + r)auo(l +r) - 0(62)
= [XoX;| = %o, | = O(87) = Kol = 0(8") = £(r) - 0(67),

where we have used the definition of X, and distance nonincreasing prop-
erty of P in the third inequality, and (3) in the fourth one.

Thus f(r)=0 for 0 <r<eg(l),and (A) is proved for 0 <t </+¢({).
To prove (B) for such ¢ one can repeat a part of the argument above, up to
assertion (3), taking into account that (x,, ), ¥, x; can now be chosen
arbitrarily, and X, = x,, X, = x, .

Assertion (C) is an easy corollary of (A), (B) and the distance decreasing
property of P. Indeed, let x be an interior point of a minimizing geodesic
y C 8, o be a normal geodesic starting at x . Then, according to (B), we
can construct a flat totally geodesic strip spanned by y and o, and, for
any point y on o, say y = o(t), we can define a lift 7 of 7 through
y as a horizontal geodesic y, of that strip. This lift is independent of o:
if incidentally y = ¢'(¢'), then the corresponding lift y;, must coincide
with y, because otherwise [y}',(uo)yy(ul)l <|y(uy)7(u,)|, and this would
contradict (A) and the distance decreasing property of P.

Thus we have correctly defined continuous horizontal distribution. Sim-
ilar arguments show that P has a correctly defined differential—a linear
map which is isometric on horizontal distribution and identically zero on
its orthogonal complement. For example, suppose two geodesics yl , y2 C
S are orthogonal at their intersection point x . Then their lifts y; , yﬁ are
orthogonal at y, because otherwise we would have ly;(uo)zl < lyl (uy)P(z)]
for some point z on y}z, close to y.

The estimate on the second fundamental form of the fiber P! (x) at y
follows from the inequality |P_1(x)y y(uo)l > |xy(u,)|, valid for all min-
imizing geodesics y C S passing through x, and from the standard esti-

mate of the second fundamental form of a metric sphere in nonnegatively
curved manifold.
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Remarks. (1) The fibers of the submersion P are not necessarily iso-
metric to each other, and not necessarily totally geodesic (see [6]).

(2) Existence of a Riemannian submersion of M onto S was conjec-
tured some time ago by D. Gromoll.

(3) It would be interesting to find a version of our théorem for Alexan-
drov spaces (which may occur, for instance, as Gromov-Hausdorff limits
of blowups of Riemannian manifolds, collapsing with lower bound on sec-
tional curvature). We hope to address this and other rigidity problems for
Alexandrov spaces elsewhere.
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